Metamath Proof Explorer


Theorem ige2m2fzo

Description: Membership of an integer greater than 1 decreased by 2 in a half-open range of nonnegative integers. (Contributed by Alexander van der Vekens, 3-Oct-2018)

Ref Expression
Assertion ige2m2fzo N 2 N 2 0 ..^ N 1

Proof

Step Hyp Ref Expression
1 eluzel2 N 2 2
2 1z 1
3 1 2 jctir N 2 2 1
4 1lt2 1 < 2
5 4 jctr N 2 N 2 1 < 2
6 eluzgtdifelfzo 2 1 N 2 1 < 2 N 2 0 ..^ N 1
7 3 5 6 sylc N 2 N 2 0 ..^ N 1