Metamath Proof Explorer


Theorem igz

Description: _i is a gaussian integer. (Contributed by Mario Carneiro, 14-Jul-2014)

Ref Expression
Assertion igz i i

Proof

Step Hyp Ref Expression
1 ax-icn i
2 rei i = 0
3 0z 0
4 2 3 eqeltri i
5 imi i = 1
6 1z 1
7 5 6 eqeltri i
8 elgz i i i i i
9 1 4 7 8 mpbir3an i i