Metamath Proof Explorer


Theorem iicmp

Description: The unit interval is compact. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 13-Jun-2014)

Ref Expression
Assertion iicmp II Comp

Proof

Step Hyp Ref Expression
1 0re 0
2 1re 1
3 eqid topGen ran . = topGen ran .
4 dfii2 II = topGen ran . 𝑡 0 1
5 3 4 icccmp 0 1 II Comp
6 1 2 5 mp2an II Comp