Database
BASIC TOPOLOGY
Metric spaces
Topological definitions using the reals
iiconn
Next ⟩
cncfval
Metamath Proof Explorer
Ascii
Unicode
Theorem
iiconn
Description:
The unit interval is connected.
(Contributed by
Mario Carneiro
, 11-Feb-2015)
Ref
Expression
Assertion
iiconn
⊢
II
∈
Conn
Proof
Step
Hyp
Ref
Expression
1
dfii2
⊢
II
=
topGen
⁡
ran
⁡
.
↾
𝑡
0
1
2
0re
⊢
0
∈
ℝ
3
1re
⊢
1
∈
ℝ
4
iccconn
⊢
0
∈
ℝ
∧
1
∈
ℝ
→
topGen
⁡
ran
⁡
.
↾
𝑡
0
1
∈
Conn
5
2
3
4
mp2an
⊢
topGen
⁡
ran
⁡
.
↾
𝑡
0
1
∈
Conn
6
1
5
eqeltri
⊢
II
∈
Conn