Metamath Proof Explorer


Theorem iiconn

Description: The unit interval is connected. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion iiconn II Conn

Proof

Step Hyp Ref Expression
1 dfii2 II = topGen ran . 𝑡 0 1
2 0re 0
3 1re 1
4 iccconn 0 1 topGen ran . 𝑡 0 1 Conn
5 2 3 4 mp2an topGen ran . 𝑡 0 1 Conn
6 1 5 eqeltri II Conn