Metamath Proof Explorer


Theorem iihalf1

Description: Map the first half of II into II . (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion iihalf1 X 0 1 2 2 X 0 1

Proof

Step Hyp Ref Expression
1 2re 2
2 remulcl 2 X 2 X
3 1 2 mpan X 2 X
4 3 3ad2ant1 X 0 X X 1 2 2 X
5 0le2 0 2
6 mulge0 2 0 2 X 0 X 0 2 X
7 1 5 6 mpanl12 X 0 X 0 2 X
8 7 3adant3 X 0 X X 1 2 0 2 X
9 1re 1
10 2pos 0 < 2
11 1 10 pm3.2i 2 0 < 2
12 lemuldiv2 X 1 2 0 < 2 2 X 1 X 1 2
13 9 11 12 mp3an23 X 2 X 1 X 1 2
14 13 biimpar X X 1 2 2 X 1
15 14 3adant2 X 0 X X 1 2 2 X 1
16 4 8 15 3jca X 0 X X 1 2 2 X 0 2 X 2 X 1
17 0re 0
18 halfre 1 2
19 17 18 elicc2i X 0 1 2 X 0 X X 1 2
20 17 9 elicc2i 2 X 0 1 2 X 0 2 X 2 X 1
21 16 19 20 3imtr4i X 0 1 2 2 X 0 1