Metamath Proof Explorer


Theorem iihalf1cn

Description: The first half function is a continuous map. (Contributed by Mario Carneiro, 6-Jun-2014) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)

Ref Expression
Hypothesis iihalf1cn.1 J = topGen ran . 𝑡 0 1 2
Assertion iihalf1cn x 0 1 2 2 x J Cn II

Proof

Step Hyp Ref Expression
1 iihalf1cn.1 J = topGen ran . 𝑡 0 1 2
2 eqid TopOpen fld = TopOpen fld
3 dfii2 II = topGen ran . 𝑡 0 1
4 0red 0
5 halfre 1 2
6 iccssre 0 1 2 0 1 2
7 4 5 6 sylancl 0 1 2
8 unitssre 0 1
9 8 a1i 0 1
10 iihalf1 x 0 1 2 2 x 0 1
11 10 adantl x 0 1 2 2 x 0 1
12 2 cnfldtopon TopOpen fld TopOn
13 12 a1i TopOpen fld TopOn
14 2cnd 2
15 13 13 14 cnmptc x 2 TopOpen fld Cn TopOpen fld
16 13 cnmptid x x TopOpen fld Cn TopOpen fld
17 2 mpomulcn u , v u v TopOpen fld × t TopOpen fld Cn TopOpen fld
18 17 a1i u , v u v TopOpen fld × t TopOpen fld Cn TopOpen fld
19 oveq12 u = 2 v = x u v = 2 x
20 13 15 16 13 13 18 19 cnmpt12 x 2 x TopOpen fld Cn TopOpen fld
21 2 1 3 7 9 11 20 cnmptre x 0 1 2 2 x J Cn II
22 21 mptru x 0 1 2 2 x J Cn II