Metamath Proof Explorer


Theorem iihalf1cn

Description: The first half function is a continuous map. (Contributed by Mario Carneiro, 6-Jun-2014)

Ref Expression
Hypothesis iihalf1cn.1 J = topGen ran . 𝑡 0 1 2
Assertion iihalf1cn x 0 1 2 2 x J Cn II

Proof

Step Hyp Ref Expression
1 iihalf1cn.1 J = topGen ran . 𝑡 0 1 2
2 eqid TopOpen fld = TopOpen fld
3 dfii2 II = topGen ran . 𝑡 0 1
4 0re 0
5 halfre 1 2
6 iccssre 0 1 2 0 1 2
7 4 5 6 mp2an 0 1 2
8 7 a1i 0 1 2
9 unitssre 0 1
10 9 a1i 0 1
11 iihalf1 x 0 1 2 2 x 0 1
12 11 adantl x 0 1 2 2 x 0 1
13 2 cnfldtopon TopOpen fld TopOn
14 13 a1i TopOpen fld TopOn
15 2cnd 2
16 14 14 15 cnmptc x 2 TopOpen fld Cn TopOpen fld
17 14 cnmptid x x TopOpen fld Cn TopOpen fld
18 2 mulcn × TopOpen fld × t TopOpen fld Cn TopOpen fld
19 18 a1i × TopOpen fld × t TopOpen fld Cn TopOpen fld
20 14 16 17 19 cnmpt12f x 2 x TopOpen fld Cn TopOpen fld
21 2 1 3 8 10 12 20 cnmptre x 0 1 2 2 x J Cn II
22 21 mptru x 0 1 2 2 x J Cn II