Metamath Proof Explorer


Theorem iihalf2

Description: Map the second half of II into II . (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion iihalf2 X 1 2 1 2 X 1 0 1

Proof

Step Hyp Ref Expression
1 2re 2
2 remulcl 2 X 2 X
3 1 2 mpan X 2 X
4 1re 1
5 resubcl 2 X 1 2 X 1
6 3 4 5 sylancl X 2 X 1
7 6 3ad2ant1 X 1 2 X X 1 2 X 1
8 subge0 2 X 1 0 2 X 1 1 2 X
9 3 4 8 sylancl X 0 2 X 1 1 2 X
10 2pos 0 < 2
11 1 10 pm3.2i 2 0 < 2
12 ledivmul 1 X 2 0 < 2 1 2 X 1 2 X
13 4 11 12 mp3an13 X 1 2 X 1 2 X
14 9 13 bitr4d X 0 2 X 1 1 2 X
15 14 biimpar X 1 2 X 0 2 X 1
16 15 3adant3 X 1 2 X X 1 0 2 X 1
17 ax-1cn 1
18 17 2timesi 2 1 = 1 + 1
19 18 a1i X 2 1 = 1 + 1
20 19 breq2d X 2 X 2 1 2 X 1 + 1
21 lemul2 X 1 2 0 < 2 X 1 2 X 2 1
22 4 11 21 mp3an23 X X 1 2 X 2 1
23 lesubadd 2 X 1 1 2 X 1 1 2 X 1 + 1
24 4 4 23 mp3an23 2 X 2 X 1 1 2 X 1 + 1
25 3 24 syl X 2 X 1 1 2 X 1 + 1
26 20 22 25 3bitr4d X X 1 2 X 1 1
27 26 biimpa X X 1 2 X 1 1
28 27 3adant2 X 1 2 X X 1 2 X 1 1
29 7 16 28 3jca X 1 2 X X 1 2 X 1 0 2 X 1 2 X 1 1
30 halfre 1 2
31 30 4 elicc2i X 1 2 1 X 1 2 X X 1
32 elicc01 2 X 1 0 1 2 X 1 0 2 X 1 2 X 1 1
33 29 31 32 3imtr4i X 1 2 1 2 X 1 0 1