Metamath Proof Explorer


Theorem iimulcl

Description: The unit interval is closed under multiplication. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion iimulcl A 0 1 B 0 1 A B 0 1

Proof

Step Hyp Ref Expression
1 remulcl A B A B
2 1 3ad2antr1 A B 0 B B 1 A B
3 2 3ad2antl1 A 0 A A 1 B 0 B B 1 A B
4 mulge0 A 0 A B 0 B 0 A B
5 4 3adantr3 A 0 A B 0 B B 1 0 A B
6 5 3adantl3 A 0 A A 1 B 0 B B 1 0 A B
7 an6 A 0 A A 1 B 0 B B 1 A B 0 A 0 B A 1 B 1
8 1re 1
9 lemul12a A 0 A 1 B 0 B 1 A 1 B 1 A B 1 1
10 8 9 mpanr2 A 0 A 1 B 0 B A 1 B 1 A B 1 1
11 8 10 mpanl2 A 0 A B 0 B A 1 B 1 A B 1 1
12 11 an4s A B 0 A 0 B A 1 B 1 A B 1 1
13 12 3impia A B 0 A 0 B A 1 B 1 A B 1 1
14 7 13 sylbi A 0 A A 1 B 0 B B 1 A B 1 1
15 1t1e1 1 1 = 1
16 14 15 breqtrdi A 0 A A 1 B 0 B B 1 A B 1
17 3 6 16 3jca A 0 A A 1 B 0 B B 1 A B 0 A B A B 1
18 elicc01 A 0 1 A 0 A A 1
19 elicc01 B 0 1 B 0 B B 1
20 18 19 anbi12i A 0 1 B 0 1 A 0 A A 1 B 0 B B 1
21 elicc01 A B 0 1 A B 0 A B A B 1
22 17 20 21 3imtr4i A 0 1 B 0 1 A B 0 1