Metamath Proof Explorer


Theorem iimulcn

Description: Multiplication is a continuous function on the unit interval. (Contributed by Mario Carneiro, 8-Jun-2014) Avoid ax-mulf . (Revised by GG, 16-Mar-2025)

Ref Expression
Assertion iimulcn x 0 1 , y 0 1 x y II × t II Cn II

Proof

Step Hyp Ref Expression
1 eqid TopOpen fld = TopOpen fld
2 1 dfii3 II = TopOpen fld 𝑡 0 1
3 1 cnfldtopon TopOpen fld TopOn
4 3 a1i TopOpen fld TopOn
5 unitsscn 0 1
6 5 a1i 0 1
7 1 mpomulcn x , y x y TopOpen fld × t TopOpen fld Cn TopOpen fld
8 7 a1i x , y x y TopOpen fld × t TopOpen fld Cn TopOpen fld
9 2 4 6 2 4 6 8 cnmpt2res x 0 1 , y 0 1 x y II × t II Cn TopOpen fld
10 9 mptru x 0 1 , y 0 1 x y II × t II Cn TopOpen fld
11 iimulcl x 0 1 y 0 1 x y 0 1
12 11 rgen2 x 0 1 y 0 1 x y 0 1
13 eqid x 0 1 , y 0 1 x y = x 0 1 , y 0 1 x y
14 13 fmpo x 0 1 y 0 1 x y 0 1 x 0 1 , y 0 1 x y : 0 1 × 0 1 0 1
15 frn x 0 1 , y 0 1 x y : 0 1 × 0 1 0 1 ran x 0 1 , y 0 1 x y 0 1
16 14 15 sylbi x 0 1 y 0 1 x y 0 1 ran x 0 1 , y 0 1 x y 0 1
17 12 16 ax-mp ran x 0 1 , y 0 1 x y 0 1
18 cnrest2 TopOpen fld TopOn ran x 0 1 , y 0 1 x y 0 1 0 1 x 0 1 , y 0 1 x y II × t II Cn TopOpen fld x 0 1 , y 0 1 x y II × t II Cn TopOpen fld 𝑡 0 1
19 3 17 5 18 mp3an x 0 1 , y 0 1 x y II × t II Cn TopOpen fld x 0 1 , y 0 1 x y II × t II Cn TopOpen fld 𝑡 0 1
20 10 19 mpbi x 0 1 , y 0 1 x y II × t II Cn TopOpen fld 𝑡 0 1
21 2 oveq2i II × t II Cn II = II × t II Cn TopOpen fld 𝑡 0 1
22 20 21 eleqtrri x 0 1 , y 0 1 x y II × t II Cn II