Metamath Proof Explorer


Theorem iincld

Description: The indexed intersection of a collection B ( x ) of closed sets is closed. Theorem 6.1(2) of Munkres p. 93. (Contributed by NM, 5-Oct-2006) (Revised by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion iincld A x A B Clsd J x A B Clsd J

Proof

Step Hyp Ref Expression
1 eqid J = J
2 1 cldss B Clsd J B J
3 dfss4 B J J J B = B
4 2 3 sylib B Clsd J J J B = B
5 4 ralimi x A B Clsd J x A J J B = B
6 iineq2 x A J J B = B x A J J B = x A B
7 5 6 syl x A B Clsd J x A J J B = x A B
8 7 adantl A x A B Clsd J x A J J B = x A B
9 iindif2 A x A J J B = J x A J B
10 9 adantr A x A B Clsd J x A J J B = J x A J B
11 8 10 eqtr3d A x A B Clsd J x A B = J x A J B
12 r19.2z A x A B Clsd J x A B Clsd J
13 cldrcl B Clsd J J Top
14 13 rexlimivw x A B Clsd J J Top
15 12 14 syl A x A B Clsd J J Top
16 1 cldopn B Clsd J J B J
17 16 ralimi x A B Clsd J x A J B J
18 17 adantl A x A B Clsd J x A J B J
19 iunopn J Top x A J B J x A J B J
20 15 18 19 syl2anc A x A B Clsd J x A J B J
21 1 opncld J Top x A J B J J x A J B Clsd J
22 15 20 21 syl2anc A x A B Clsd J J x A J B Clsd J
23 11 22 eqeltrd A x A B Clsd J x A B Clsd J