Metamath Proof Explorer


Theorem iineq1

Description: Equality theorem for indexed intersection. (Contributed by NM, 27-Jun-1998)

Ref Expression
Assertion iineq1 A = B x A C = x B C

Proof

Step Hyp Ref Expression
1 raleq A = B x A y C x B y C
2 1 abbidv A = B y | x A y C = y | x B y C
3 df-iin x A C = y | x A y C
4 df-iin x B C = y | x B y C
5 2 3 4 3eqtr4g A = B x A C = x B C