Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Indexed union and intersection
iineq1
Next ⟩
ss2iun
Metamath Proof Explorer
Ascii
Unicode
Theorem
iineq1
Description:
Equality theorem for indexed intersection.
(Contributed by
NM
, 27-Jun-1998)
Ref
Expression
Assertion
iineq1
⊢
A
=
B
→
⋂
x
∈
A
C
=
⋂
x
∈
B
C
Proof
Step
Hyp
Ref
Expression
1
raleq
⊢
A
=
B
→
∀
x
∈
A
y
∈
C
↔
∀
x
∈
B
y
∈
C
2
1
abbidv
⊢
A
=
B
→
y
|
∀
x
∈
A
y
∈
C
=
y
|
∀
x
∈
B
y
∈
C
3
df-iin
⊢
⋂
x
∈
A
C
=
y
|
∀
x
∈
A
y
∈
C
4
df-iin
⊢
⋂
x
∈
B
C
=
y
|
∀
x
∈
B
y
∈
C
5
2
3
4
3eqtr4g
⊢
A
=
B
→
⋂
x
∈
A
C
=
⋂
x
∈
B
C