Metamath Proof Explorer


Theorem iineq12dv

Description: Equality deduction for indexed intersection. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses iineq12dv.1 φ A = B
iineq12dv.2 φ x B C = D
Assertion iineq12dv φ x A C = x B D

Proof

Step Hyp Ref Expression
1 iineq12dv.1 φ A = B
2 iineq12dv.2 φ x B C = D
3 1 iineq1d φ x A C = x B C
4 2 iineq2dv φ x B C = x B D
5 3 4 eqtrd φ x A C = x B D