Metamath Proof Explorer


Theorem iineq2

Description: Equality theorem for indexed intersection. (Contributed by NM, 22-Oct-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion iineq2 x A B = C x A B = x A C

Proof

Step Hyp Ref Expression
1 eleq2 B = C y B y C
2 1 ralimi x A B = C x A y B y C
3 ralbi x A y B y C x A y B x A y C
4 2 3 syl x A B = C x A y B x A y C
5 4 abbidv x A B = C y | x A y B = y | x A y C
6 df-iin x A B = y | x A y B
7 df-iin x A C = y | x A y C
8 5 6 7 3eqtr4g x A B = C x A B = x A C