| Step |
Hyp |
Ref |
Expression |
| 1 |
|
r19.2z |
|
| 2 |
|
errel |
|
| 3 |
|
df-rel |
|
| 4 |
2 3
|
sylib |
|
| 5 |
4
|
reximi |
|
| 6 |
|
iinss |
|
| 7 |
1 5 6
|
3syl |
|
| 8 |
|
df-rel |
|
| 9 |
7 8
|
sylibr |
|
| 10 |
|
id |
|
| 11 |
10
|
ersymb |
|
| 12 |
11
|
biimpd |
|
| 13 |
|
df-br |
|
| 14 |
|
df-br |
|
| 15 |
12 13 14
|
3imtr3g |
|
| 16 |
15
|
ral2imi |
|
| 17 |
16
|
adantl |
|
| 18 |
|
df-br |
|
| 19 |
|
opex |
|
| 20 |
|
eliin |
|
| 21 |
19 20
|
ax-mp |
|
| 22 |
18 21
|
bitri |
|
| 23 |
|
df-br |
|
| 24 |
|
opex |
|
| 25 |
|
eliin |
|
| 26 |
24 25
|
ax-mp |
|
| 27 |
23 26
|
bitri |
|
| 28 |
17 22 27
|
3imtr4g |
|
| 29 |
28
|
imp |
|
| 30 |
|
r19.26 |
|
| 31 |
10
|
ertr |
|
| 32 |
|
df-br |
|
| 33 |
13 32
|
anbi12i |
|
| 34 |
|
df-br |
|
| 35 |
31 33 34
|
3imtr3g |
|
| 36 |
35
|
ral2imi |
|
| 37 |
36
|
adantl |
|
| 38 |
30 37
|
biimtrrid |
|
| 39 |
|
df-br |
|
| 40 |
|
opex |
|
| 41 |
|
eliin |
|
| 42 |
40 41
|
ax-mp |
|
| 43 |
39 42
|
bitri |
|
| 44 |
22 43
|
anbi12i |
|
| 45 |
|
df-br |
|
| 46 |
|
opex |
|
| 47 |
|
eliin |
|
| 48 |
46 47
|
ax-mp |
|
| 49 |
45 48
|
bitri |
|
| 50 |
38 44 49
|
3imtr4g |
|
| 51 |
50
|
imp |
|
| 52 |
|
simpl |
|
| 53 |
|
simpr |
|
| 54 |
52 53
|
erref |
|
| 55 |
|
df-br |
|
| 56 |
54 55
|
sylib |
|
| 57 |
56
|
expcom |
|
| 58 |
57
|
ralimdv |
|
| 59 |
58
|
com12 |
|
| 60 |
59
|
adantl |
|
| 61 |
|
r19.26 |
|
| 62 |
|
r19.2z |
|
| 63 |
|
vex |
|
| 64 |
63 63
|
opeldm |
|
| 65 |
|
erdm |
|
| 66 |
65
|
eleq2d |
|
| 67 |
66
|
biimpa |
|
| 68 |
64 67
|
sylan2 |
|
| 69 |
68
|
rexlimivw |
|
| 70 |
62 69
|
syl |
|
| 71 |
70
|
ex |
|
| 72 |
61 71
|
biimtrrid |
|
| 73 |
72
|
expdimp |
|
| 74 |
60 73
|
impbid |
|
| 75 |
|
df-br |
|
| 76 |
|
opex |
|
| 77 |
|
eliin |
|
| 78 |
76 77
|
ax-mp |
|
| 79 |
75 78
|
bitri |
|
| 80 |
74 79
|
bitr4di |
|
| 81 |
9 29 51 80
|
iserd |
|