Metamath Proof Explorer


Theorem iinexd

Description: The existence of an indexed union. x is normally a free-variable parameter in B , which should be read B ( x ) . (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses iinexd.1 φ A
iinexd.2 φ x A B C
Assertion iinexd φ x A B V

Proof

Step Hyp Ref Expression
1 iinexd.1 φ A
2 iinexd.2 φ x A B C
3 iinexg A x A B C x A B V
4 1 2 3 syl2anc φ x A B V