Metamath Proof Explorer


Theorem iinfi

Description: An indexed intersection of elements of C is an element of the finite intersections of C . (Contributed by Mario Carneiro, 30-Aug-2015)

Ref Expression
Assertion iinfi C V x A B C A A Fin x A B fi C

Proof

Step Hyp Ref Expression
1 simpr1 C V x A B C A A Fin x A B C
2 dfiin2g x A B C x A B = y | x A y = B
3 1 2 syl C V x A B C A A Fin x A B = y | x A y = B
4 eqid x A B = x A B
5 4 rnmpt ran x A B = y | x A y = B
6 5 inteqi ran x A B = y | x A y = B
7 3 6 eqtr4di C V x A B C A A Fin x A B = ran x A B
8 4 fmpt x A B C x A B : A C
9 8 3anbi1i x A B C A A Fin x A B : A C A A Fin
10 intrnfi C V x A B : A C A A Fin ran x A B fi C
11 9 10 sylan2b C V x A B C A A Fin ran x A B fi C
12 7 11 eqeltrd C V x A B C A A Fin x A B fi C