Metamath Proof Explorer


Theorem iinpreima

Description: Preimage of an intersection. (Contributed by FL, 16-Apr-2012)

Ref Expression
Assertion iinpreima FunFAF-1xAB=xAF-1B

Proof

Step Hyp Ref Expression
1 simpll FunFAyF-1xABFunF
2 cnvimass F-1xABdomF
3 2 sseli yF-1xABydomF
4 3 adantl FunFAyF-1xABydomF
5 fvex FyV
6 fvimacnvi FunFyF-1xABFyxAB
7 6 adantlr FunFAyF-1xABFyxAB
8 eliin FyVFyxABxAFyB
9 8 biimpa FyVFyxABxAFyB
10 5 7 9 sylancr FunFAyF-1xABxAFyB
11 fvimacnv FunFydomFFyByF-1B
12 11 ralbidv FunFydomFxAFyBxAyF-1B
13 12 biimpa FunFydomFxAFyBxAyF-1B
14 1 4 10 13 syl21anc FunFAyF-1xABxAyF-1B
15 eliin yVyxAF-1BxAyF-1B
16 15 elv yxAF-1BxAyF-1B
17 14 16 sylibr FunFAyF-1xAByxAF-1B
18 simpll FunFAyxAF-1BFunF
19 15 biimpd yVyxAF-1BxAyF-1B
20 19 elv yxAF-1BxAyF-1B
21 20 adantl FunFAyxAF-1BxAyF-1B
22 fvimacnvi FunFyF-1BFyB
23 22 ex FunFyF-1BFyB
24 23 ralimdv FunFxAyF-1BxAFyB
25 18 21 24 sylc FunFAyxAF-1BxAFyB
26 5 8 ax-mp FyxABxAFyB
27 25 26 sylibr FunFAyxAF-1BFyxAB
28 r19.2zb AxAyF-1BxAyF-1B
29 28 biimpi AxAyF-1BxAyF-1B
30 cnvimass F-1BdomF
31 30 sseli yF-1BydomF
32 31 rexlimivw xAyF-1BydomF
33 29 32 syl6 AxAyF-1BydomF
34 16 33 biimtrid AyxAF-1BydomF
35 34 adantl FunFAyxAF-1BydomF
36 35 imp FunFAyxAF-1BydomF
37 fvimacnv FunFydomFFyxAByF-1xAB
38 18 36 37 syl2anc FunFAyxAF-1BFyxAByF-1xAB
39 27 38 mpbid FunFAyxAF-1ByF-1xAB
40 17 39 impbida FunFAyF-1xAByxAF-1B
41 40 eqrdv FunFAF-1xAB=xAF-1B