Metamath Proof Explorer


Theorem iinpw

Description: The power class of an intersection in terms of indexed intersection. Exercise 24(a) of Enderton p. 33. (Contributed by NM, 29-Nov-2003)

Ref Expression
Assertion iinpw 𝒫 A = x A 𝒫 x

Proof

Step Hyp Ref Expression
1 ssint y A x A y x
2 velpw y 𝒫 x y x
3 2 ralbii x A y 𝒫 x x A y x
4 1 3 bitr4i y A x A y 𝒫 x
5 velpw y 𝒫 A y A
6 eliin y V y x A 𝒫 x x A y 𝒫 x
7 6 elv y x A 𝒫 x x A y 𝒫 x
8 4 5 7 3bitr4i y 𝒫 A y x A 𝒫 x
9 8 eqriv 𝒫 A = x A 𝒫 x