Metamath Proof Explorer


Theorem iinss

Description: Subset implication for an indexed intersection. (Contributed by NM, 15-Oct-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion iinss x A B C x A B C

Proof

Step Hyp Ref Expression
1 eliin y V y x A B x A y B
2 1 elv y x A B x A y B
3 ssel B C y B y C
4 3 reximi x A B C x A y B y C
5 r19.36v x A y B y C x A y B y C
6 4 5 syl x A B C x A y B y C
7 2 6 syl5bi x A B C y x A B y C
8 7 ssrdv x A B C x A B C