Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Indexed union and intersection
iinss1
Next ⟩
iuneq1
Metamath Proof Explorer
Ascii
Unicode
Theorem
iinss1
Description:
Subclass theorem for indexed intersection.
(Contributed by
NM
, 24-Jan-2012)
Ref
Expression
Assertion
iinss1
⊢
A
⊆
B
→
⋂
x
∈
B
C
⊆
⋂
x
∈
A
C
Proof
Step
Hyp
Ref
Expression
1
ssralv
⊢
A
⊆
B
→
∀
x
∈
B
y
∈
C
→
∀
x
∈
A
y
∈
C
2
eliin
⊢
y
∈
V
→
y
∈
⋂
x
∈
B
C
↔
∀
x
∈
B
y
∈
C
3
2
elv
⊢
y
∈
⋂
x
∈
B
C
↔
∀
x
∈
B
y
∈
C
4
eliin
⊢
y
∈
V
→
y
∈
⋂
x
∈
A
C
↔
∀
x
∈
A
y
∈
C
5
4
elv
⊢
y
∈
⋂
x
∈
A
C
↔
∀
x
∈
A
y
∈
C
6
1
3
5
3imtr4g
⊢
A
⊆
B
→
y
∈
⋂
x
∈
B
C
→
y
∈
⋂
x
∈
A
C
7
6
ssrdv
⊢
A
⊆
B
→
⋂
x
∈
B
C
⊆
⋂
x
∈
A
C