Metamath Proof Explorer


Theorem iinss1

Description: Subclass theorem for indexed intersection. (Contributed by NM, 24-Jan-2012)

Ref Expression
Assertion iinss1 A B x B C x A C

Proof

Step Hyp Ref Expression
1 ssralv A B x B y C x A y C
2 eliin y V y x B C x B y C
3 2 elv y x B C x B y C
4 eliin y V y x A C x A y C
5 4 elv y x A C x A y C
6 1 3 5 3imtr4g A B y x B C y x A C
7 6 ssrdv A B x B C x A C