Metamath Proof Explorer


Theorem iinss2

Description: An indexed intersection is included in any of its members. (Contributed by FL, 15-Oct-2012)

Ref Expression
Assertion iinss2 x A x A B B

Proof

Step Hyp Ref Expression
1 eliin y V y x A B x A y B
2 1 elv y x A B x A y B
3 rsp x A y B x A y B
4 3 com12 x A x A y B y B
5 2 4 syl5bi x A y x A B y B
6 5 ssrdv x A x A B B