Metamath Proof Explorer


Theorem iinss2d

Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses iinss2d.1 x φ
iinss2d.2 _ x A
iinss2d.3 _ x C
iinss2d.4 φ A
iinss2d.5 φ x A B C
Assertion iinss2d φ x A B C

Proof

Step Hyp Ref Expression
1 iinss2d.1 x φ
2 iinss2d.2 _ x A
3 iinss2d.3 _ x C
4 iinss2d.4 φ A
5 iinss2d.5 φ x A B C
6 5 3adant3 φ x A B C
7 2 n0f A x x A
8 4 7 sylib φ x x A
9 rextru x x A x A
10 8 9 sylib φ x A
11 1 6 10 reximdd φ x A B C
12 3 iinssf x A B C x A B C
13 11 12 syl φ x A B C