Metamath Proof Explorer


Theorem iinssd

Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses iinssd.1 φ X A
iinssd.2 x = X B = D
iinssd.3 φ D C
Assertion iinssd φ x A B C

Proof

Step Hyp Ref Expression
1 iinssd.1 φ X A
2 iinssd.2 x = X B = D
3 iinssd.3 φ D C
4 2 sseq1d x = X B C D C
5 4 rspcev X A D C x A B C
6 1 3 5 syl2anc φ x A B C
7 iinss x A B C x A B C
8 6 7 syl φ x A B C