Metamath Proof Explorer


Theorem iinssdf

Description: Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses iinssdf.a _ x A
iinssdf.n _ x X
iinssdf.c _ x C
iinssdf.d _ x D
iinssdf.x φ X A
iinssdf.b x = X B = D
iinssdf.s φ D C
Assertion iinssdf φ x A B C

Proof

Step Hyp Ref Expression
1 iinssdf.a _ x A
2 iinssdf.n _ x X
3 iinssdf.c _ x C
4 iinssdf.d _ x D
5 iinssdf.x φ X A
6 iinssdf.b x = X B = D
7 iinssdf.s φ D C
8 4 3 nfss x D C
9 6 sseq1d x = X B C D C
10 8 2 1 9 rspcef X A D C x A B C
11 5 7 10 syl2anc φ x A B C
12 3 iinssf x A B C x A B C
13 11 12 syl φ x A B C