Metamath Proof Explorer


Theorem iinvdif

Description: The indexed intersection of a complement. (Contributed by Gérard Lang, 5-Aug-2018)

Ref Expression
Assertion iinvdif x A V B = V x A B

Proof

Step Hyp Ref Expression
1 dif0 V = V
2 0iun x B =
3 2 difeq2i V x B = V
4 0iin x V B = V
5 1 3 4 3eqtr4ri x V B = V x B
6 iineq1 A = x A V B = x V B
7 iuneq1 A = x A B = x B
8 7 difeq2d A = V x A B = V x B
9 5 6 8 3eqtr4a A = x A V B = V x A B
10 iindif2 A x A V B = V x A B
11 9 10 pm2.61ine x A V B = V x A B