Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Indexed union and intersection
iinvdif
Next ⟩
elriin
Metamath Proof Explorer
Ascii
Unicode
Theorem
iinvdif
Description:
The indexed intersection of a complement.
(Contributed by
Gérard Lang
, 5-Aug-2018)
Ref
Expression
Assertion
iinvdif
⊢
⋂
x
∈
A
V
∖
B
=
V
∖
⋃
x
∈
A
B
Proof
Step
Hyp
Ref
Expression
1
dif0
⊢
V
∖
∅
=
V
2
0iun
⊢
⋃
x
∈
∅
B
=
∅
3
2
difeq2i
⊢
V
∖
⋃
x
∈
∅
B
=
V
∖
∅
4
0iin
⊢
⋂
x
∈
∅
V
∖
B
=
V
5
1
3
4
3eqtr4ri
⊢
⋂
x
∈
∅
V
∖
B
=
V
∖
⋃
x
∈
∅
B
6
iineq1
⊢
A
=
∅
→
⋂
x
∈
A
V
∖
B
=
⋂
x
∈
∅
V
∖
B
7
iuneq1
⊢
A
=
∅
→
⋃
x
∈
A
B
=
⋃
x
∈
∅
B
8
7
difeq2d
⊢
A
=
∅
→
V
∖
⋃
x
∈
A
B
=
V
∖
⋃
x
∈
∅
B
9
5
6
8
3eqtr4a
⊢
A
=
∅
→
⋂
x
∈
A
V
∖
B
=
V
∖
⋃
x
∈
A
B
10
iindif2
⊢
A
≠
∅
→
⋂
x
∈
A
V
∖
B
=
V
∖
⋃
x
∈
A
B
11
9
10
pm2.61ine
⊢
⋂
x
∈
A
V
∖
B
=
V
∖
⋃
x
∈
A
B