Metamath Proof Explorer


Theorem iinxsng

Description: A singleton index picks out an instance of an indexed intersection's argument. (Contributed by NM, 15-Jan-2012) (Proof shortened by Mario Carneiro, 17-Nov-2016)

Ref Expression
Hypothesis iinxsng.1 x = A B = C
Assertion iinxsng A V x A B = C

Proof

Step Hyp Ref Expression
1 iinxsng.1 x = A B = C
2 df-iin x A B = y | x A y B
3 1 eleq2d x = A y B y C
4 3 ralsng A V x A y B y C
5 4 abbi1dv A V y | x A y B = C
6 2 5 eqtrid A V x A B = C