Metamath Proof Explorer


Theorem iirev

Description: Reverse the unit interval. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion iirev X 0 1 1 X 0 1

Proof

Step Hyp Ref Expression
1 1re 1
2 resubcl 1 X 1 X
3 1 2 mpan X 1 X
4 3 3ad2ant1 X 0 X X 1 1 X
5 simp3 X 0 X X 1 X 1
6 simp1 X 0 X X 1 X
7 subge0 1 X 0 1 X X 1
8 1 6 7 sylancr X 0 X X 1 0 1 X X 1
9 5 8 mpbird X 0 X X 1 0 1 X
10 simp2 X 0 X X 1 0 X
11 subge02 1 X 0 X 1 X 1
12 1 6 11 sylancr X 0 X X 1 0 X 1 X 1
13 10 12 mpbid X 0 X X 1 1 X 1
14 4 9 13 3jca X 0 X X 1 1 X 0 1 X 1 X 1
15 elicc01 X 0 1 X 0 X X 1
16 elicc01 1 X 0 1 1 X 0 1 X 1 X 1
17 14 15 16 3imtr4i X 0 1 1 X 0 1