Database
BASIC TOPOLOGY
Metric spaces
Topological definitions using the reals
iirev
Next ⟩
iirevcn
Metamath Proof Explorer
Ascii
Unicode
Theorem
iirev
Description:
Reverse the unit interval.
(Contributed by
Jeff Madsen
, 2-Sep-2009)
Ref
Expression
Assertion
iirev
⊢
X
∈
0
1
→
1
−
X
∈
0
1
Proof
Step
Hyp
Ref
Expression
1
1re
⊢
1
∈
ℝ
2
resubcl
⊢
1
∈
ℝ
∧
X
∈
ℝ
→
1
−
X
∈
ℝ
3
1
2
mpan
⊢
X
∈
ℝ
→
1
−
X
∈
ℝ
4
3
3ad2ant1
⊢
X
∈
ℝ
∧
0
≤
X
∧
X
≤
1
→
1
−
X
∈
ℝ
5
simp3
⊢
X
∈
ℝ
∧
0
≤
X
∧
X
≤
1
→
X
≤
1
6
simp1
⊢
X
∈
ℝ
∧
0
≤
X
∧
X
≤
1
→
X
∈
ℝ
7
subge0
⊢
1
∈
ℝ
∧
X
∈
ℝ
→
0
≤
1
−
X
↔
X
≤
1
8
1
6
7
sylancr
⊢
X
∈
ℝ
∧
0
≤
X
∧
X
≤
1
→
0
≤
1
−
X
↔
X
≤
1
9
5
8
mpbird
⊢
X
∈
ℝ
∧
0
≤
X
∧
X
≤
1
→
0
≤
1
−
X
10
simp2
⊢
X
∈
ℝ
∧
0
≤
X
∧
X
≤
1
→
0
≤
X
11
subge02
⊢
1
∈
ℝ
∧
X
∈
ℝ
→
0
≤
X
↔
1
−
X
≤
1
12
1
6
11
sylancr
⊢
X
∈
ℝ
∧
0
≤
X
∧
X
≤
1
→
0
≤
X
↔
1
−
X
≤
1
13
10
12
mpbid
⊢
X
∈
ℝ
∧
0
≤
X
∧
X
≤
1
→
1
−
X
≤
1
14
4
9
13
3jca
⊢
X
∈
ℝ
∧
0
≤
X
∧
X
≤
1
→
1
−
X
∈
ℝ
∧
0
≤
1
−
X
∧
1
−
X
≤
1
15
elicc01
⊢
X
∈
0
1
↔
X
∈
ℝ
∧
0
≤
X
∧
X
≤
1
16
elicc01
⊢
1
−
X
∈
0
1
↔
1
−
X
∈
ℝ
∧
0
≤
1
−
X
∧
1
−
X
≤
1
17
14
15
16
3imtr4i
⊢
X
∈
0
1
→
1
−
X
∈
0
1