Metamath Proof Explorer


Theorem iirevcn

Description: The reversion function is a continuous map of the unit interval. (Contributed by Mario Carneiro, 6-Jun-2014)

Ref Expression
Assertion iirevcn x 0 1 1 x II Cn II

Proof

Step Hyp Ref Expression
1 eqid TopOpen fld = TopOpen fld
2 dfii2 II = topGen ran . 𝑡 0 1
3 unitssre 0 1
4 3 a1i 0 1
5 iirev x 0 1 1 x 0 1
6 5 adantl x 0 1 1 x 0 1
7 1 cnfldtopon TopOpen fld TopOn
8 7 a1i TopOpen fld TopOn
9 1cnd 1
10 8 8 9 cnmptc x 1 TopOpen fld Cn TopOpen fld
11 8 cnmptid x x TopOpen fld Cn TopOpen fld
12 1 subcn TopOpen fld × t TopOpen fld Cn TopOpen fld
13 12 a1i TopOpen fld × t TopOpen fld Cn TopOpen fld
14 8 10 11 13 cnmpt12f x 1 x TopOpen fld Cn TopOpen fld
15 1 2 2 4 4 6 14 cnmptre x 0 1 1 x II Cn II
16 15 mptru x 0 1 1 x II Cn II