Metamath Proof Explorer


Theorem iistmd

Description: The closed unit interval forms a topological monoid under multiplication. (Contributed by Thierry Arnoux, 25-Mar-2017)

Ref Expression
Hypothesis df-iis I = mulGrp fld 𝑠 0 1
Assertion iistmd I TopMnd

Proof

Step Hyp Ref Expression
1 df-iis I = mulGrp fld 𝑠 0 1
2 cnnrg fld NrmRing
3 nrgtrg fld NrmRing fld TopRing
4 eqid mulGrp fld = mulGrp fld
5 4 trgtmd fld TopRing mulGrp fld TopMnd
6 2 3 5 mp2b mulGrp fld TopMnd
7 unitsscn 0 1
8 1elunit 1 0 1
9 iimulcl x 0 1 y 0 1 x y 0 1
10 9 rgen2 x 0 1 y 0 1 x y 0 1
11 nrgring fld NrmRing fld Ring
12 4 ringmgp fld Ring mulGrp fld Mnd
13 2 11 12 mp2b mulGrp fld Mnd
14 cnfldbas = Base fld
15 4 14 mgpbas = Base mulGrp fld
16 cnfld1 1 = 1 fld
17 4 16 ringidval 1 = 0 mulGrp fld
18 cnfldmul × = fld
19 4 18 mgpplusg × = + mulGrp fld
20 15 17 19 issubm mulGrp fld Mnd 0 1 SubMnd mulGrp fld 0 1 1 0 1 x 0 1 y 0 1 x y 0 1
21 13 20 ax-mp 0 1 SubMnd mulGrp fld 0 1 1 0 1 x 0 1 y 0 1 x y 0 1
22 7 8 10 21 mpbir3an 0 1 SubMnd mulGrp fld
23 1 submtmd mulGrp fld TopMnd 0 1 SubMnd mulGrp fld I TopMnd
24 6 22 23 mp2an I TopMnd