Database
BASIC TOPOLOGY
Metric spaces
Topological definitions using the reals
iitopon
Next ⟩
iitop
Metamath Proof Explorer
Ascii
Unicode
Theorem
iitopon
Description:
The unit interval is a topological space.
(Contributed by
Mario Carneiro
, 3-Sep-2015)
Ref
Expression
Assertion
iitopon
⊢
II
∈
TopOn
⁡
0
1
Proof
Step
Hyp
Ref
Expression
1
cnxmet
⊢
abs
∘
−
∈
∞Met
⁡
ℂ
2
unitssre
⊢
0
1
⊆
ℝ
3
ax-resscn
⊢
ℝ
⊆
ℂ
4
2
3
sstri
⊢
0
1
⊆
ℂ
5
xmetres2
⊢
abs
∘
−
∈
∞Met
⁡
ℂ
∧
0
1
⊆
ℂ
→
abs
∘
−
↾
0
1
×
0
1
∈
∞Met
⁡
0
1
6
1
4
5
mp2an
⊢
abs
∘
−
↾
0
1
×
0
1
∈
∞Met
⁡
0
1
7
df-ii
⊢
II
=
MetOpen
⁡
abs
∘
−
↾
0
1
×
0
1
8
7
mopntopon
⊢
abs
∘
−
↾
0
1
×
0
1
∈
∞Met
⁡
0
1
→
II
∈
TopOn
⁡
0
1
9
6
8
ax-mp
⊢
II
∈
TopOn
⁡
0
1