Metamath Proof Explorer


Theorem iitopon

Description: The unit interval is a topological space. (Contributed by Mario Carneiro, 3-Sep-2015)

Ref Expression
Assertion iitopon II TopOn 0 1

Proof

Step Hyp Ref Expression
1 cnxmet abs ∞Met
2 unitssre 0 1
3 ax-resscn
4 2 3 sstri 0 1
5 xmetres2 abs ∞Met 0 1 abs 0 1 × 0 1 ∞Met 0 1
6 1 4 5 mp2an abs 0 1 × 0 1 ∞Met 0 1
7 df-ii II = MetOpen abs 0 1 × 0 1
8 7 mopntopon abs 0 1 × 0 1 ∞Met 0 1 II TopOn 0 1
9 6 8 ax-mp II TopOn 0 1