Metamath Proof Explorer


Theorem iiuni

Description: The base set of the unit interval. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 15-Jan-2014)

Ref Expression
Assertion iiuni 0 1 = II

Proof

Step Hyp Ref Expression
1 iitopon II TopOn 0 1
2 1 toponunii 0 1 = II