Metamath Proof Explorer


Theorem im2anan9r

Description: Deduction joining nested implications to form implication of conjunctions. (Contributed by NM, 29-Feb-1996)

Ref Expression
Hypotheses im2an9.1 φ ψ χ
im2an9.2 θ τ η
Assertion im2anan9r θ φ ψ τ χ η

Proof

Step Hyp Ref Expression
1 im2an9.1 φ ψ χ
2 im2an9.2 θ τ η
3 1 2 im2anan9 φ θ ψ τ χ η
4 3 ancoms θ φ ψ τ χ η