Description: The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 18-Feb-2015) (Revised by Mario Carneiro, 22-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | imacmp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ima | |
|
2 | 1 | oveq2i | |
3 | simpr | |
|
4 | simpl | |
|
5 | inss2 | |
|
6 | eqid | |
|
7 | 6 | cnrest | |
8 | 4 5 7 | sylancl | |
9 | resdmres | |
|
10 | dmres | |
|
11 | eqid | |
|
12 | 6 11 | cnf | |
13 | fdm | |
|
14 | 4 12 13 | 3syl | |
15 | 14 | ineq2d | |
16 | 10 15 | eqtrid | |
17 | 16 | reseq2d | |
18 | 9 17 | eqtr3id | |
19 | cmptop | |
|
20 | 19 | adantl | |
21 | restrcl | |
|
22 | 6 | restin | |
23 | 20 21 22 | 3syl | |
24 | 23 | oveq1d | |
25 | 8 18 24 | 3eltr4d | |
26 | rncmp | |
|
27 | 3 25 26 | syl2anc | |
28 | 2 27 | eqeltrid | |