Metamath Proof Explorer


Theorem imacmp

Description: The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 18-Feb-2015) (Revised by Mario Carneiro, 22-Aug-2015)

Ref Expression
Assertion imacmp FJCnKJ𝑡ACompK𝑡FAComp

Proof

Step Hyp Ref Expression
1 df-ima FA=ranFA
2 1 oveq2i K𝑡FA=K𝑡ranFA
3 simpr FJCnKJ𝑡ACompJ𝑡AComp
4 simpl FJCnKJ𝑡ACompFJCnK
5 inss2 AJJ
6 eqid J=J
7 6 cnrest FJCnKAJJFAJJ𝑡AJCnK
8 4 5 7 sylancl FJCnKJ𝑡ACompFAJJ𝑡AJCnK
9 resdmres FdomFA=FA
10 dmres domFA=AdomF
11 eqid K=K
12 6 11 cnf FJCnKF:JK
13 fdm F:JKdomF=J
14 4 12 13 3syl FJCnKJ𝑡ACompdomF=J
15 14 ineq2d FJCnKJ𝑡ACompAdomF=AJ
16 10 15 eqtrid FJCnKJ𝑡ACompdomFA=AJ
17 16 reseq2d FJCnKJ𝑡ACompFdomFA=FAJ
18 9 17 eqtr3id FJCnKJ𝑡ACompFA=FAJ
19 cmptop J𝑡ACompJ𝑡ATop
20 19 adantl FJCnKJ𝑡ACompJ𝑡ATop
21 restrcl J𝑡ATopJVAV
22 6 restin JVAVJ𝑡A=J𝑡AJ
23 20 21 22 3syl FJCnKJ𝑡ACompJ𝑡A=J𝑡AJ
24 23 oveq1d FJCnKJ𝑡ACompJ𝑡ACnK=J𝑡AJCnK
25 8 18 24 3eltr4d FJCnKJ𝑡ACompFAJ𝑡ACnK
26 rncmp J𝑡ACompFAJ𝑡ACnKK𝑡ranFAComp
27 3 25 26 syl2anc FJCnKJ𝑡ACompK𝑡ranFAComp
28 2 27 eqeltrid FJCnKJ𝑡ACompK𝑡FAComp