Metamath Proof Explorer


Theorem imacosupp

Description: The image of the support of the composition of two functions is the support of the outer function. (Contributed by AV, 30-May-2019)

Ref Expression
Assertion imacosupp F V G W Fun G F supp Z ran G G F G supp Z = F supp Z

Proof

Step Hyp Ref Expression
1 suppco F V G W F G supp Z = G -1 F supp Z
2 1 imaeq2d F V G W G F G supp Z = G G -1 F supp Z
3 funforn Fun G G : dom G onto ran G
4 foimacnv G : dom G onto ran G F supp Z ran G G G -1 F supp Z = F supp Z
5 3 4 sylanb Fun G F supp Z ran G G G -1 F supp Z = F supp Z
6 2 5 sylan9eq F V G W Fun G F supp Z ran G G F G supp Z = F supp Z
7 6 ex F V G W Fun G F supp Z ran G G F G supp Z = F supp Z