Step |
Hyp |
Ref |
Expression |
1 |
|
imacrhmcl.c |
|
2 |
|
imacrhmcl.h |
|
3 |
|
imacrhmcl.m |
|
4 |
|
imacrhmcl.s |
|
5 |
|
rhmima |
|
6 |
2 4 5
|
syl2anc |
|
7 |
1
|
subrgring |
|
8 |
6 7
|
syl |
|
9 |
1
|
ressbasss2 |
|
10 |
9
|
sseli |
|
11 |
9
|
sseli |
|
12 |
10 11
|
anim12i |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
13 14
|
rhmf |
|
16 |
2 15
|
syl |
|
17 |
16
|
ffund |
|
18 |
|
fvelima |
|
19 |
17 18
|
sylan |
|
20 |
19
|
adantrr |
|
21 |
|
fvelima |
|
22 |
17 21
|
sylan |
|
23 |
22
|
adantrl |
|
24 |
23
|
adantr |
|
25 |
3
|
ad3antrrr |
|
26 |
13
|
subrgss |
|
27 |
4 26
|
syl |
|
28 |
27
|
ad3antrrr |
|
29 |
|
simplrl |
|
30 |
28 29
|
sseldd |
|
31 |
|
simprl |
|
32 |
28 31
|
sseldd |
|
33 |
|
eqid |
|
34 |
13 33
|
crngcom |
|
35 |
25 30 32 34
|
syl3anc |
|
36 |
35
|
fveq2d |
|
37 |
2
|
ad3antrrr |
|
38 |
|
eqid |
|
39 |
13 33 38
|
rhmmul |
|
40 |
37 30 32 39
|
syl3anc |
|
41 |
13 33 38
|
rhmmul |
|
42 |
37 32 30 41
|
syl3anc |
|
43 |
36 40 42
|
3eqtr3d |
|
44 |
|
imaexg |
|
45 |
1 38
|
ressmulr |
|
46 |
2 44 45
|
3syl |
|
47 |
46
|
ad3antrrr |
|
48 |
|
simplrr |
|
49 |
|
simprr |
|
50 |
47 48 49
|
oveq123d |
|
51 |
47 49 48
|
oveq123d |
|
52 |
43 50 51
|
3eqtr3d |
|
53 |
24 52
|
rexlimddv |
|
54 |
20 53
|
rexlimddv |
|
55 |
12 54
|
sylan2 |
|
56 |
55
|
ralrimivva |
|
57 |
|
eqid |
|
58 |
|
eqid |
|
59 |
57 58
|
iscrng2 |
|
60 |
8 56 59
|
sylanbrc |
|