Metamath Proof Explorer


Theorem imaddd

Description: Imaginary part distributes over addition. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses recld.1 φ A
readdd.2 φ B
Assertion imaddd φ A + B = A + B

Proof

Step Hyp Ref Expression
1 recld.1 φ A
2 readdd.2 φ B
3 imadd A B A + B = A + B
4 1 2 3 syl2anc φ A + B = A + B