Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
imadmres
Next ⟩
resdmss
Metamath Proof Explorer
Ascii
Unicode
Theorem
imadmres
Description:
The image of the domain of a restriction.
(Contributed by
NM
, 8-Apr-2007)
Ref
Expression
Assertion
imadmres
⊢
A
dom
⁡
A
↾
B
=
A
B
Proof
Step
Hyp
Ref
Expression
1
resdmres
⊢
A
↾
dom
⁡
A
↾
B
=
A
↾
B
2
1
rneqi
⊢
ran
⁡
A
↾
dom
⁡
A
↾
B
=
ran
⁡
A
↾
B
3
df-ima
⊢
A
dom
⁡
A
↾
B
=
ran
⁡
A
↾
dom
⁡
A
↾
B
4
df-ima
⊢
A
B
=
ran
⁡
A
↾
B
5
2
3
4
3eqtr4i
⊢
A
dom
⁡
A
↾
B
=
A
B