Metamath Proof Explorer


Theorem imadmrn

Description: The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994)

Ref Expression
Assertion imadmrn A dom A = ran A

Proof

Step Hyp Ref Expression
1 vex x V
2 vex y V
3 1 2 opeldm x y A x dom A
4 3 pm4.71i x y A x y A x dom A
5 ancom x y A x dom A x dom A x y A
6 4 5 bitr2i x dom A x y A x y A
7 6 exbii x x dom A x y A x x y A
8 7 abbii y | x x dom A x y A = y | x x y A
9 dfima3 A dom A = y | x x dom A x y A
10 dfrn3 ran A = y | x x y A
11 8 9 10 3eqtr4i A dom A = ran A