Metamath Proof Explorer


Theorem imadomg

Description: An image of a function under a set is dominated by the set. Proposition 10.34 of TakeutiZaring p. 92. (Contributed by NM, 23-Jul-2004)

Ref Expression
Assertion imadomg A B Fun F F A A

Proof

Step Hyp Ref Expression
1 df-ima F A = ran F A
2 resfunexg Fun F A B F A V
3 2 dmexd Fun F A B dom F A V
4 funres Fun F Fun F A
5 funforn Fun F A F A : dom F A onto ran F A
6 4 5 sylib Fun F F A : dom F A onto ran F A
7 6 adantr Fun F A B F A : dom F A onto ran F A
8 fodomg dom F A V F A : dom F A onto ran F A ran F A dom F A
9 3 7 8 sylc Fun F A B ran F A dom F A
10 1 9 eqbrtrid Fun F A B F A dom F A
11 10 expcom A B Fun F F A dom F A
12 dmres dom F A = A dom F
13 inss1 A dom F A
14 12 13 eqsstri dom F A A
15 ssdomg A B dom F A A dom F A A
16 14 15 mpi A B dom F A A
17 domtr F A dom F A dom F A A F A A
18 16 17 sylan2 F A dom F A A B F A A
19 18 expcom A B F A dom F A F A A
20 11 19 syld A B Fun F F A A