Metamath Proof Explorer


Theorem imadrhmcl

Description: The image of a (nontrivial) division ring homomorphism is a division ring. (Contributed by SN, 17-Feb-2025)

Ref Expression
Hypotheses imadrhmcl.r R = N 𝑠 F S
imadrhmcl.0 0 ˙ = 0 N
imadrhmcl.h φ F M RingHom N
imadrhmcl.s φ S SubDRing M
imadrhmcl.1 φ ran F 0 ˙
Assertion imadrhmcl φ R DivRing

Proof

Step Hyp Ref Expression
1 imadrhmcl.r R = N 𝑠 F S
2 imadrhmcl.0 0 ˙ = 0 N
3 imadrhmcl.h φ F M RingHom N
4 imadrhmcl.s φ S SubDRing M
5 imadrhmcl.1 φ ran F 0 ˙
6 sdrgsubrg S SubDRing M S SubRing M
7 4 6 syl φ S SubRing M
8 rhmima F M RingHom N S SubRing M F S SubRing N
9 3 7 8 syl2anc φ F S SubRing N
10 1 subrgring F S SubRing N R Ring
11 9 10 syl φ R Ring
12 eqid Base R = Base R
13 eqid Unit R = Unit R
14 12 13 unitss Unit R Base R
15 14 a1i φ Unit R Base R
16 eqid Base M = Base M
17 eqid Base N = Base N
18 16 17 rhmf F M RingHom N F : Base M Base N
19 3 18 syl φ F : Base M Base N
20 19 adantr φ 1 R = 0 R F : Base M Base N
21 rhmrcl2 F M RingHom N N Ring
22 3 21 syl φ N Ring
23 simpr φ 1 R = 0 R 1 R = 0 R
24 eqid 1 N = 1 N
25 1 24 subrg1 F S SubRing N 1 N = 1 R
26 9 25 syl φ 1 N = 1 R
27 26 adantr φ 1 R = 0 R 1 N = 1 R
28 1 2 subrg0 F S SubRing N 0 ˙ = 0 R
29 9 28 syl φ 0 ˙ = 0 R
30 29 adantr φ 1 R = 0 R 0 ˙ = 0 R
31 23 27 30 3eqtr4rd φ 1 R = 0 R 0 ˙ = 1 N
32 17 2 24 01eq0ring N Ring 0 ˙ = 1 N Base N = 0 ˙
33 22 31 32 syl2an2r φ 1 R = 0 R Base N = 0 ˙
34 33 feq3d φ 1 R = 0 R F : Base M Base N F : Base M 0 ˙
35 20 34 mpbid φ 1 R = 0 R F : Base M 0 ˙
36 2 fvexi 0 ˙ V
37 36 fconst2 F : Base M 0 ˙ F = Base M × 0 ˙
38 35 37 sylib φ 1 R = 0 R F = Base M × 0 ˙
39 19 ffnd φ F Fn Base M
40 sdrgrcl S SubDRing M M DivRing
41 4 40 syl φ M DivRing
42 41 drngringd φ M Ring
43 eqid 0 M = 0 M
44 16 43 ring0cl M Ring 0 M Base M
45 42 44 syl φ 0 M Base M
46 45 ne0d φ Base M
47 fconst5 F Fn Base M Base M F = Base M × 0 ˙ ran F = 0 ˙
48 39 46 47 syl2anc φ F = Base M × 0 ˙ ran F = 0 ˙
49 48 adantr φ 1 R = 0 R F = Base M × 0 ˙ ran F = 0 ˙
50 38 49 mpbid φ 1 R = 0 R ran F = 0 ˙
51 5 50 mteqand φ 1 R 0 R
52 eqid 0 R = 0 R
53 eqid 1 R = 1 R
54 13 52 53 0unit R Ring 0 R Unit R 1 R = 0 R
55 11 54 syl φ 0 R Unit R 1 R = 0 R
56 55 necon3bbid φ ¬ 0 R Unit R 1 R 0 R
57 51 56 mpbird φ ¬ 0 R Unit R
58 ssdifsn Unit R Base R 0 R Unit R Base R ¬ 0 R Unit R
59 15 57 58 sylanbrc φ Unit R Base R 0 R
60 39 fnfund φ Fun F
61 1 ressbasss2 Base R F S
62 eldifi x Base R 0 R x Base R
63 61 62 sselid x Base R 0 R x F S
64 fvelima Fun F x F S a S F a = x
65 60 63 64 syl2an φ x Base R 0 R a S F a = x
66 simprr φ x Base R 0 R a S F a = x F a = x
67 simprl φ x Base R 0 R a S F a = x a S
68 67 fvresd φ x Base R 0 R a S F a = x F S a = F a
69 eqid M 𝑠 S = M 𝑠 S
70 69 resrhm F M RingHom N S SubRing M F S M 𝑠 S RingHom N
71 3 7 70 syl2anc φ F S M 𝑠 S RingHom N
72 df-ima F S = ran F S
73 eqimss2 F S = ran F S ran F S F S
74 72 73 mp1i φ ran F S F S
75 1 resrhm2b F S SubRing N ran F S F S F S M 𝑠 S RingHom N F S M 𝑠 S RingHom R
76 9 74 75 syl2anc φ F S M 𝑠 S RingHom N F S M 𝑠 S RingHom R
77 71 76 mpbid φ F S M 𝑠 S RingHom R
78 77 ad2antrr φ x Base R 0 R a S F a = x F S M 𝑠 S RingHom R
79 eldifsni x Base R 0 R x 0 R
80 79 ad2antlr φ x Base R 0 R a S F a = x x 0 R
81 68 adantr φ x Base R 0 R a S F a = x a = 0 M F S a = F a
82 simpr φ x Base R 0 R a S F a = x a = 0 M a = 0 M
83 82 fveq2d φ x Base R 0 R a S F a = x a = 0 M F S a = F S 0 M
84 69 43 subrg0 S SubRing M 0 M = 0 M 𝑠 S
85 7 84 syl φ 0 M = 0 M 𝑠 S
86 85 fveq2d φ F S 0 M = F S 0 M 𝑠 S
87 rhmghm F S M 𝑠 S RingHom R F S M 𝑠 S GrpHom R
88 eqid 0 M 𝑠 S = 0 M 𝑠 S
89 88 52 ghmid F S M 𝑠 S GrpHom R F S 0 M 𝑠 S = 0 R
90 77 87 89 3syl φ F S 0 M 𝑠 S = 0 R
91 86 90 eqtrd φ F S 0 M = 0 R
92 91 ad3antrrr φ x Base R 0 R a S F a = x a = 0 M F S 0 M = 0 R
93 83 92 eqtrd φ x Base R 0 R a S F a = x a = 0 M F S a = 0 R
94 simplrr φ x Base R 0 R a S F a = x a = 0 M F a = x
95 81 93 94 3eqtr3rd φ x Base R 0 R a S F a = x a = 0 M x = 0 R
96 80 95 mteqand φ x Base R 0 R a S F a = x a 0 M
97 4 ad2antrr φ x Base R 0 R a S F a = x S SubDRing M
98 eqid Unit M 𝑠 S = Unit M 𝑠 S
99 69 43 98 sdrgunit S SubDRing M a Unit M 𝑠 S a S a 0 M
100 97 99 syl φ x Base R 0 R a S F a = x a Unit M 𝑠 S a S a 0 M
101 67 96 100 mpbir2and φ x Base R 0 R a S F a = x a Unit M 𝑠 S
102 elrhmunit F S M 𝑠 S RingHom R a Unit M 𝑠 S F S a Unit R
103 78 101 102 syl2anc φ x Base R 0 R a S F a = x F S a Unit R
104 68 103 eqeltrrd φ x Base R 0 R a S F a = x F a Unit R
105 66 104 eqeltrrd φ x Base R 0 R a S F a = x x Unit R
106 65 105 rexlimddv φ x Base R 0 R x Unit R
107 59 106 eqelssd φ Unit R = Base R 0 R
108 12 13 52 isdrng R DivRing R Ring Unit R = Base R 0 R
109 11 107 108 sylanbrc φ R DivRing