Step |
Hyp |
Ref |
Expression |
1 |
|
imadrhmcl.r |
|
2 |
|
imadrhmcl.0 |
|
3 |
|
imadrhmcl.h |
|
4 |
|
imadrhmcl.s |
|
5 |
|
imadrhmcl.1 |
|
6 |
|
sdrgsubrg |
|
7 |
4 6
|
syl |
|
8 |
|
rhmima |
|
9 |
3 7 8
|
syl2anc |
|
10 |
1
|
subrgring |
|
11 |
9 10
|
syl |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
12 13
|
unitss |
|
15 |
14
|
a1i |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
16 17
|
rhmf |
|
19 |
3 18
|
syl |
|
20 |
19
|
adantr |
|
21 |
|
rhmrcl2 |
|
22 |
3 21
|
syl |
|
23 |
|
simpr |
|
24 |
|
eqid |
|
25 |
1 24
|
subrg1 |
|
26 |
9 25
|
syl |
|
27 |
26
|
adantr |
|
28 |
1 2
|
subrg0 |
|
29 |
9 28
|
syl |
|
30 |
29
|
adantr |
|
31 |
23 27 30
|
3eqtr4rd |
|
32 |
17 2 24
|
01eq0ring |
|
33 |
22 31 32
|
syl2an2r |
|
34 |
33
|
feq3d |
|
35 |
20 34
|
mpbid |
|
36 |
2
|
fvexi |
|
37 |
36
|
fconst2 |
|
38 |
35 37
|
sylib |
|
39 |
19
|
ffnd |
|
40 |
|
sdrgrcl |
|
41 |
4 40
|
syl |
|
42 |
41
|
drngringd |
|
43 |
|
eqid |
|
44 |
16 43
|
ring0cl |
|
45 |
42 44
|
syl |
|
46 |
45
|
ne0d |
|
47 |
|
fconst5 |
|
48 |
39 46 47
|
syl2anc |
|
49 |
48
|
adantr |
|
50 |
38 49
|
mpbid |
|
51 |
5 50
|
mteqand |
|
52 |
|
eqid |
|
53 |
|
eqid |
|
54 |
13 52 53
|
0unit |
|
55 |
11 54
|
syl |
|
56 |
55
|
necon3bbid |
|
57 |
51 56
|
mpbird |
|
58 |
|
ssdifsn |
|
59 |
15 57 58
|
sylanbrc |
|
60 |
39
|
fnfund |
|
61 |
1
|
ressbasss2 |
|
62 |
|
eldifi |
|
63 |
61 62
|
sselid |
|
64 |
|
fvelima |
|
65 |
60 63 64
|
syl2an |
|
66 |
|
simprr |
|
67 |
|
simprl |
|
68 |
67
|
fvresd |
|
69 |
|
eqid |
|
70 |
69
|
resrhm |
|
71 |
3 7 70
|
syl2anc |
|
72 |
|
df-ima |
|
73 |
|
eqimss2 |
|
74 |
72 73
|
mp1i |
|
75 |
1
|
resrhm2b |
|
76 |
9 74 75
|
syl2anc |
|
77 |
71 76
|
mpbid |
|
78 |
77
|
ad2antrr |
|
79 |
|
eldifsni |
|
80 |
79
|
ad2antlr |
|
81 |
68
|
adantr |
|
82 |
|
simpr |
|
83 |
82
|
fveq2d |
|
84 |
69 43
|
subrg0 |
|
85 |
7 84
|
syl |
|
86 |
85
|
fveq2d |
|
87 |
|
rhmghm |
|
88 |
|
eqid |
|
89 |
88 52
|
ghmid |
|
90 |
77 87 89
|
3syl |
|
91 |
86 90
|
eqtrd |
|
92 |
91
|
ad3antrrr |
|
93 |
83 92
|
eqtrd |
|
94 |
|
simplrr |
|
95 |
81 93 94
|
3eqtr3rd |
|
96 |
80 95
|
mteqand |
|
97 |
4
|
ad2antrr |
|
98 |
|
eqid |
|
99 |
69 43 98
|
sdrgunit |
|
100 |
97 99
|
syl |
|
101 |
67 96 100
|
mpbir2and |
|
102 |
|
elrhmunit |
|
103 |
78 101 102
|
syl2anc |
|
104 |
68 103
|
eqeltrrd |
|
105 |
66 104
|
eqeltrrd |
|
106 |
65 105
|
rexlimddv |
|
107 |
59 106
|
eqelssd |
|
108 |
12 13 52
|
isdrng |
|
109 |
11 107 108
|
sylanbrc |
|