Metamath Proof Explorer


Theorem imaelfm

Description: An image of a filter element is in the image filter. (Contributed by Jeff Hankins, 5-Oct-2009) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Hypothesis imaelfm.l L = Y filGen B
Assertion imaelfm X A B fBas Y F : Y X S L F S X FilMap F B

Proof

Step Hyp Ref Expression
1 imaelfm.l L = Y filGen B
2 fimass F : Y X F S X
3 2 3ad2ant3 X A B fBas Y F : Y X F S X
4 ssid F S F S
5 imaeq2 x = S F x = F S
6 5 sseq1d x = S F x F S F S F S
7 6 rspcev S L F S F S x L F x F S
8 4 7 mpan2 S L x L F x F S
9 3 8 anim12i X A B fBas Y F : Y X S L F S X x L F x F S
10 1 elfm2 X A B fBas Y F : Y X F S X FilMap F B F S X x L F x F S
11 10 adantr X A B fBas Y F : Y X S L F S X FilMap F B F S X x L F x F S
12 9 11 mpbird X A B fBas Y F : Y X S L F S X FilMap F B