Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Relations
imaeq1
Next ⟩
imaeq2
Metamath Proof Explorer
Ascii
Unicode
Theorem
imaeq1
Description:
Equality theorem for image.
(Contributed by
NM
, 14-Aug-1994)
Ref
Expression
Assertion
imaeq1
⊢
A
=
B
→
A
C
=
B
C
Proof
Step
Hyp
Ref
Expression
1
reseq1
⊢
A
=
B
→
A
↾
C
=
B
↾
C
2
1
rneqd
⊢
A
=
B
→
ran
⁡
A
↾
C
=
ran
⁡
B
↾
C
3
df-ima
⊢
A
C
=
ran
⁡
A
↾
C
4
df-ima
⊢
B
C
=
ran
⁡
B
↾
C
5
2
3
4
3eqtr4g
⊢
A
=
B
→
A
C
=
B
C