Metamath Proof Explorer


Theorem imaeqsexv

Description: Substitute a function value into an existential quantifier over an image. (Contributed by Scott Fenton, 27-Sep-2024)

Ref Expression
Hypothesis imaeqsex.1 x=Fyφψ
Assertion imaeqsexv FFnABAxFBφyBψ

Proof

Step Hyp Ref Expression
1 imaeqsex.1 x=Fyφψ
2 df-rex xFBφxxFBφ
3 fvelimab FFnABAxFByBFy=x
4 3 anbi1d FFnABAxFBφyBFy=xφ
5 4 exbidv FFnABAxxFBφxyBFy=xφ
6 2 5 bitrid FFnABAxFBφxyBFy=xφ
7 rexcom4 yBxFy=xφxyBFy=xφ
8 eqcom Fy=xx=Fy
9 8 anbi1i Fy=xφx=Fyφ
10 9 exbii xFy=xφxx=Fyφ
11 fvex FyV
12 11 1 ceqsexv xx=Fyφψ
13 10 12 bitri xFy=xφψ
14 13 rexbii yBxFy=xφyBψ
15 r19.41v yBFy=xφyBFy=xφ
16 15 exbii xyBFy=xφxyBFy=xφ
17 7 14 16 3bitr3ri xyBFy=xφyBψ
18 6 17 bitrdi FFnABAxFBφyBψ