Metamath Proof Explorer


Theorem imain

Description: The image of an intersection is the intersection of images. (Contributed by Paul Chapman, 11-Apr-2009)

Ref Expression
Assertion imain Fun F -1 F A B = F A F B

Proof

Step Hyp Ref Expression
1 imadif Fun F -1 F A A B = F A F A B
2 imadif Fun F -1 F A B = F A F B
3 2 difeq2d Fun F -1 F A F A B = F A F A F B
4 1 3 eqtrd Fun F -1 F A A B = F A F A F B
5 dfin4 A B = A A B
6 5 imaeq2i F A B = F A A B
7 dfin4 F A F B = F A F A F B
8 4 6 7 3eqtr4g Fun F -1 F A B = F A F B