Metamath Proof Explorer


Theorem imaopab

Description: The image of a class of ordered pairs. (Contributed by Steven Nguyen, 6-Jun-2023)

Ref Expression
Assertion imaopab x y | φ A = y | x A φ

Proof

Step Hyp Ref Expression
1 df-ima x y | φ A = ran x y | φ A
2 resopab x y | φ A = x y | x A φ
3 2 rneqi ran x y | φ A = ran x y | x A φ
4 rnopab ran x y | x A φ = y | x x A φ
5 df-rex x A φ x x A φ
6 5 abbii y | x A φ = y | x x A φ
7 4 6 eqtr4i ran x y | x A φ = y | x A φ
8 1 3 7 3eqtri x y | φ A = y | x A φ