Step |
Hyp |
Ref |
Expression |
1 |
|
imasabl.u |
|
2 |
|
imasabl.v |
|
3 |
|
imasabl.p |
|
4 |
|
imasabl.f |
|
5 |
|
imasabl.e |
|
6 |
|
imasabl.r |
|
7 |
|
imasabl.z |
|
8 |
6
|
ablgrpd |
|
9 |
1 2 3 4 5 8 7
|
imasgrp |
|
10 |
1 2 4 6
|
imasbas |
|
11 |
10
|
eqcomd |
|
12 |
11
|
eleq2d |
|
13 |
11
|
eleq2d |
|
14 |
12 13
|
anbi12d |
|
15 |
14
|
adantr |
|
16 |
|
foelcdmi |
|
17 |
16
|
ex |
|
18 |
|
foelcdmi |
|
19 |
18
|
ex |
|
20 |
17 19
|
anim12d |
|
21 |
4 20
|
syl |
|
22 |
21
|
adantr |
|
23 |
6
|
ad3antrrr |
|
24 |
2
|
eleq2d |
|
25 |
24
|
biimpd |
|
26 |
25
|
adantr |
|
27 |
26
|
imp |
|
28 |
27
|
adantr |
|
29 |
2
|
eleq2d |
|
30 |
29
|
biimpd |
|
31 |
30
|
adantr |
|
32 |
31
|
adantr |
|
33 |
32
|
imp |
|
34 |
|
eqid |
|
35 |
|
eqid |
|
36 |
34 35
|
ablcom |
|
37 |
23 28 33 36
|
syl3anc |
|
38 |
37
|
fveq2d |
|
39 |
|
simplll |
|
40 |
|
simpr |
|
41 |
40
|
adantr |
|
42 |
|
simpr |
|
43 |
3
|
eqcomd |
|
44 |
43
|
oveqd |
|
45 |
44
|
fveq2d |
|
46 |
43
|
oveqd |
|
47 |
46
|
fveq2d |
|
48 |
45 47
|
eqeq12d |
|
49 |
48
|
3ad2ant1 |
|
50 |
5 49
|
sylibrd |
|
51 |
|
eqid |
|
52 |
4 50 1 2 6 35 51
|
imasaddval |
|
53 |
39 41 42 52
|
syl3anc |
|
54 |
4 50 1 2 6 35 51
|
imasaddval |
|
55 |
39 42 41 54
|
syl3anc |
|
56 |
38 53 55
|
3eqtr4d |
|
57 |
56
|
adantr |
|
58 |
|
oveq12 |
|
59 |
58
|
ancoms |
|
60 |
|
oveq12 |
|
61 |
59 60
|
eqeq12d |
|
62 |
61
|
adantl |
|
63 |
57 62
|
mpbid |
|
64 |
63
|
exp32 |
|
65 |
64
|
rexlimdva |
|
66 |
65
|
com23 |
|
67 |
66
|
rexlimdva |
|
68 |
67
|
impd |
|
69 |
22 68
|
syld |
|
70 |
15 69
|
sylbid |
|
71 |
70
|
imp |
|
72 |
71
|
ralrimivva |
|
73 |
|
simpr |
|
74 |
72 73
|
jca |
|
75 |
9 74
|
mpdan |
|
76 |
|
eqid |
|
77 |
76 51
|
isabl2 |
|
78 |
77
|
anbi1i |
|
79 |
|
an21 |
|
80 |
78 79
|
bitri |
|
81 |
75 80
|
sylibr |
|