| Step |
Hyp |
Ref |
Expression |
| 1 |
|
imasabl.u |
|
| 2 |
|
imasabl.v |
|
| 3 |
|
imasabl.p |
|
| 4 |
|
imasabl.f |
|
| 5 |
|
imasabl.e |
|
| 6 |
|
imasabl.r |
|
| 7 |
|
imasabl.z |
|
| 8 |
6
|
ablgrpd |
|
| 9 |
1 2 3 4 5 8 7
|
imasgrp |
|
| 10 |
1 2 4 6
|
imasbas |
|
| 11 |
10
|
eqcomd |
|
| 12 |
11
|
eleq2d |
|
| 13 |
11
|
eleq2d |
|
| 14 |
12 13
|
anbi12d |
|
| 15 |
14
|
adantr |
|
| 16 |
|
foelcdmi |
|
| 17 |
16
|
ex |
|
| 18 |
|
foelcdmi |
|
| 19 |
18
|
ex |
|
| 20 |
17 19
|
anim12d |
|
| 21 |
4 20
|
syl |
|
| 22 |
21
|
adantr |
|
| 23 |
6
|
ad3antrrr |
|
| 24 |
2
|
eleq2d |
|
| 25 |
24
|
biimpd |
|
| 26 |
25
|
adantr |
|
| 27 |
26
|
imp |
|
| 28 |
27
|
adantr |
|
| 29 |
2
|
eleq2d |
|
| 30 |
29
|
biimpd |
|
| 31 |
30
|
adantr |
|
| 32 |
31
|
adantr |
|
| 33 |
32
|
imp |
|
| 34 |
|
eqid |
|
| 35 |
|
eqid |
|
| 36 |
34 35
|
ablcom |
|
| 37 |
23 28 33 36
|
syl3anc |
|
| 38 |
37
|
fveq2d |
|
| 39 |
|
simplll |
|
| 40 |
|
simpr |
|
| 41 |
40
|
adantr |
|
| 42 |
|
simpr |
|
| 43 |
3
|
eqcomd |
|
| 44 |
43
|
oveqd |
|
| 45 |
44
|
fveq2d |
|
| 46 |
43
|
oveqd |
|
| 47 |
46
|
fveq2d |
|
| 48 |
45 47
|
eqeq12d |
|
| 49 |
48
|
3ad2ant1 |
|
| 50 |
5 49
|
sylibrd |
|
| 51 |
|
eqid |
|
| 52 |
4 50 1 2 6 35 51
|
imasaddval |
|
| 53 |
39 41 42 52
|
syl3anc |
|
| 54 |
4 50 1 2 6 35 51
|
imasaddval |
|
| 55 |
39 42 41 54
|
syl3anc |
|
| 56 |
38 53 55
|
3eqtr4d |
|
| 57 |
56
|
adantr |
|
| 58 |
|
oveq12 |
|
| 59 |
58
|
ancoms |
|
| 60 |
|
oveq12 |
|
| 61 |
59 60
|
eqeq12d |
|
| 62 |
61
|
adantl |
|
| 63 |
57 62
|
mpbid |
|
| 64 |
63
|
exp32 |
|
| 65 |
64
|
rexlimdva |
|
| 66 |
65
|
com23 |
|
| 67 |
66
|
rexlimdva |
|
| 68 |
67
|
impd |
|
| 69 |
22 68
|
syld |
|
| 70 |
15 69
|
sylbid |
|
| 71 |
70
|
imp |
|
| 72 |
71
|
ralrimivva |
|
| 73 |
|
simpr |
|
| 74 |
72 73
|
jca |
|
| 75 |
9 74
|
mpdan |
|
| 76 |
|
eqid |
|
| 77 |
76 51
|
isabl2 |
|
| 78 |
77
|
anbi1i |
|
| 79 |
|
an21 |
|
| 80 |
78 79
|
bitri |
|
| 81 |
75 80
|
sylibr |
|