Metamath Proof Explorer


Theorem imasaddfnlem

Description: The image structure operation is a function if the original operation is compatible with the function. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses imasaddf.f φ F : V onto B
imasaddf.e φ a V b V p V q V F a = F p F b = F q F a · ˙ b = F p · ˙ q
imasaddflem.a φ ˙ = p V q V F p F q F p · ˙ q
Assertion imasaddfnlem φ ˙ Fn B × B

Proof

Step Hyp Ref Expression
1 imasaddf.f φ F : V onto B
2 imasaddf.e φ a V b V p V q V F a = F p F b = F q F a · ˙ b = F p · ˙ q
3 imasaddflem.a φ ˙ = p V q V F p F q F p · ˙ q
4 opex F p F q V
5 fvex F p · ˙ q V
6 4 5 relsnop Rel F p F q F p · ˙ q
7 6 rgenw q V Rel F p F q F p · ˙ q
8 reliun Rel q V F p F q F p · ˙ q q V Rel F p F q F p · ˙ q
9 7 8 mpbir Rel q V F p F q F p · ˙ q
10 9 rgenw p V Rel q V F p F q F p · ˙ q
11 reliun Rel p V q V F p F q F p · ˙ q p V Rel q V F p F q F p · ˙ q
12 10 11 mpbir Rel p V q V F p F q F p · ˙ q
13 3 releqd φ Rel ˙ Rel p V q V F p F q F p · ˙ q
14 12 13 mpbiri φ Rel ˙
15 fof F : V onto B F : V B
16 1 15 syl φ F : V B
17 ffvelrn F : V B p V F p B
18 ffvelrn F : V B q V F q B
19 17 18 anim12dan F : V B p V q V F p B F q B
20 16 19 sylan φ p V q V F p B F q B
21 opelxpi F p B F q B F p F q B × B
22 20 21 syl φ p V q V F p F q B × B
23 opelxpi F p F q B × B F p · ˙ q V F p F q F p · ˙ q B × B × V
24 22 5 23 sylancl φ p V q V F p F q F p · ˙ q B × B × V
25 24 snssd φ p V q V F p F q F p · ˙ q B × B × V
26 25 anassrs φ p V q V F p F q F p · ˙ q B × B × V
27 26 iunssd φ p V q V F p F q F p · ˙ q B × B × V
28 27 iunssd φ p V q V F p F q F p · ˙ q B × B × V
29 3 28 eqsstrd φ ˙ B × B × V
30 dmss ˙ B × B × V dom ˙ dom B × B × V
31 29 30 syl φ dom ˙ dom B × B × V
32 vn0 V
33 dmxp V dom B × B × V = B × B
34 32 33 ax-mp dom B × B × V = B × B
35 31 34 sseqtrdi φ dom ˙ B × B
36 forn F : V onto B ran F = B
37 1 36 syl φ ran F = B
38 37 sqxpeqd φ ran F × ran F = B × B
39 35 38 sseqtrrd φ dom ˙ ran F × ran F
40 3 eleq2d φ F a F b w ˙ F a F b w p V q V F p F q F p · ˙ q
41 40 adantr φ a V b V F a F b w ˙ F a F b w p V q V F p F q F p · ˙ q
42 df-br F a F b ˙ w F a F b w ˙
43 eliun F a F b w p V q V F p F q F p · ˙ q p V F a F b w q V F p F q F p · ˙ q
44 eliun F a F b w q V F p F q F p · ˙ q q V F a F b w F p F q F p · ˙ q
45 44 rexbii p V F a F b w q V F p F q F p · ˙ q p V q V F a F b w F p F q F p · ˙ q
46 43 45 bitr2i p V q V F a F b w F p F q F p · ˙ q F a F b w p V q V F p F q F p · ˙ q
47 41 42 46 3bitr4g φ a V b V F a F b ˙ w p V q V F a F b w F p F q F p · ˙ q
48 opex F a F b w V
49 48 elsn F a F b w F p F q F p · ˙ q F a F b w = F p F q F p · ˙ q
50 opex F a F b V
51 vex w V
52 50 51 opth F a F b w = F p F q F p · ˙ q F a F b = F p F q w = F p · ˙ q
53 fvex F a V
54 fvex F b V
55 53 54 opth F a F b = F p F q F a = F p F b = F q
56 55 2 syl5bi φ a V b V p V q V F a F b = F p F q F a · ˙ b = F p · ˙ q
57 eqeq2 F a · ˙ b = F p · ˙ q w = F a · ˙ b w = F p · ˙ q
58 57 biimprd F a · ˙ b = F p · ˙ q w = F p · ˙ q w = F a · ˙ b
59 56 58 syl6 φ a V b V p V q V F a F b = F p F q w = F p · ˙ q w = F a · ˙ b
60 59 impd φ a V b V p V q V F a F b = F p F q w = F p · ˙ q w = F a · ˙ b
61 52 60 syl5bi φ a V b V p V q V F a F b w = F p F q F p · ˙ q w = F a · ˙ b
62 49 61 syl5bi φ a V b V p V q V F a F b w F p F q F p · ˙ q w = F a · ˙ b
63 62 3expa φ a V b V p V q V F a F b w F p F q F p · ˙ q w = F a · ˙ b
64 63 rexlimdvva φ a V b V p V q V F a F b w F p F q F p · ˙ q w = F a · ˙ b
65 47 64 sylbid φ a V b V F a F b ˙ w w = F a · ˙ b
66 65 alrimiv φ a V b V w F a F b ˙ w w = F a · ˙ b
67 mo2icl w F a F b ˙ w w = F a · ˙ b * w F a F b ˙ w
68 66 67 syl φ a V b V * w F a F b ˙ w
69 68 ralrimivva φ a V b V * w F a F b ˙ w
70 fofn F : V onto B F Fn V
71 1 70 syl φ F Fn V
72 opeq2 z = F b F a z = F a F b
73 72 breq1d z = F b F a z ˙ w F a F b ˙ w
74 73 mobidv z = F b * w F a z ˙ w * w F a F b ˙ w
75 74 ralrn F Fn V z ran F * w F a z ˙ w b V * w F a F b ˙ w
76 71 75 syl φ z ran F * w F a z ˙ w b V * w F a F b ˙ w
77 76 ralbidv φ a V z ran F * w F a z ˙ w a V b V * w F a F b ˙ w
78 69 77 mpbird φ a V z ran F * w F a z ˙ w
79 opeq1 y = F a y z = F a z
80 79 breq1d y = F a y z ˙ w F a z ˙ w
81 80 mobidv y = F a * w y z ˙ w * w F a z ˙ w
82 81 ralbidv y = F a z ran F * w y z ˙ w z ran F * w F a z ˙ w
83 82 ralrn F Fn V y ran F z ran F * w y z ˙ w a V z ran F * w F a z ˙ w
84 71 83 syl φ y ran F z ran F * w y z ˙ w a V z ran F * w F a z ˙ w
85 78 84 mpbird φ y ran F z ran F * w y z ˙ w
86 breq1 x = y z x ˙ w y z ˙ w
87 86 mobidv x = y z * w x ˙ w * w y z ˙ w
88 87 ralxp x ran F × ran F * w x ˙ w y ran F z ran F * w y z ˙ w
89 85 88 sylibr φ x ran F × ran F * w x ˙ w
90 ssralv dom ˙ ran F × ran F x ran F × ran F * w x ˙ w x dom ˙ * w x ˙ w
91 39 89 90 sylc φ x dom ˙ * w x ˙ w
92 dffun7 Fun ˙ Rel ˙ x dom ˙ * w x ˙ w
93 14 91 92 sylanbrc φ Fun ˙
94 eqimss2 ˙ = p V q V F p F q F p · ˙ q p V q V F p F q F p · ˙ q ˙
95 3 94 syl φ p V q V F p F q F p · ˙ q ˙
96 iunss p V q V F p F q F p · ˙ q ˙ p V q V F p F q F p · ˙ q ˙
97 95 96 sylib φ p V q V F p F q F p · ˙ q ˙
98 iunss q V F p F q F p · ˙ q ˙ q V F p F q F p · ˙ q ˙
99 opex F p F q F p · ˙ q V
100 99 snss F p F q F p · ˙ q ˙ F p F q F p · ˙ q ˙
101 4 5 opeldm F p F q F p · ˙ q ˙ F p F q dom ˙
102 100 101 sylbir F p F q F p · ˙ q ˙ F p F q dom ˙
103 102 ralimi q V F p F q F p · ˙ q ˙ q V F p F q dom ˙
104 98 103 sylbi q V F p F q F p · ˙ q ˙ q V F p F q dom ˙
105 104 ralimi p V q V F p F q F p · ˙ q ˙ p V q V F p F q dom ˙
106 97 105 syl φ p V q V F p F q dom ˙
107 opeq2 z = F q F p z = F p F q
108 107 eleq1d z = F q F p z dom ˙ F p F q dom ˙
109 108 ralrn F Fn V z ran F F p z dom ˙ q V F p F q dom ˙
110 71 109 syl φ z ran F F p z dom ˙ q V F p F q dom ˙
111 110 ralbidv φ p V z ran F F p z dom ˙ p V q V F p F q dom ˙
112 106 111 mpbird φ p V z ran F F p z dom ˙
113 opeq1 y = F p y z = F p z
114 113 eleq1d y = F p y z dom ˙ F p z dom ˙
115 114 ralbidv y = F p z ran F y z dom ˙ z ran F F p z dom ˙
116 115 ralrn F Fn V y ran F z ran F y z dom ˙ p V z ran F F p z dom ˙
117 71 116 syl φ y ran F z ran F y z dom ˙ p V z ran F F p z dom ˙
118 112 117 mpbird φ y ran F z ran F y z dom ˙
119 eleq1 x = y z x dom ˙ y z dom ˙
120 119 ralxp x ran F × ran F x dom ˙ y ran F z ran F y z dom ˙
121 118 120 sylibr φ x ran F × ran F x dom ˙
122 dfss3 ran F × ran F dom ˙ x ran F × ran F x dom ˙
123 121 122 sylibr φ ran F × ran F dom ˙
124 38 123 eqsstrrd φ B × B dom ˙
125 35 124 eqssd φ dom ˙ = B × B
126 df-fn ˙ Fn B × B Fun ˙ dom ˙ = B × B
127 93 125 126 sylanbrc φ ˙ Fn B × B