Metamath Proof Explorer


Theorem imasbas

Description: The base set of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015) (Revised by Mario Carneiro, 11-Jul-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by AV, 6-Oct-2020)

Ref Expression
Hypotheses imasbas.u φ U = F 𝑠 R
imasbas.v φ V = Base R
imasbas.f φ F : V onto B
imasbas.r φ R Z
Assertion imasbas φ B = Base U

Proof

Step Hyp Ref Expression
1 imasbas.u φ U = F 𝑠 R
2 imasbas.v φ V = Base R
3 imasbas.f φ F : V onto B
4 imasbas.r φ R Z
5 eqid + R = + R
6 eqid R = R
7 eqid Scalar R = Scalar R
8 eqid Base Scalar R = Base Scalar R
9 eqid R = R
10 eqid 𝑖 R = 𝑖 R
11 eqid TopOpen R = TopOpen R
12 eqid dist R = dist R
13 eqid R = R
14 eqidd φ p V q V F p F q F p + R q = p V q V F p F q F p + R q
15 eqidd φ p V q V F p F q F p R q = p V q V F p F q F p R q
16 eqidd φ q V p Base Scalar R , x F q F p R q = q V p Base Scalar R , x F q F p R q
17 eqidd φ p V q V F p F q p 𝑖 R q = p V q V F p F q p 𝑖 R q
18 eqidd φ TopOpen R qTop F = TopOpen R qTop F
19 eqidd φ x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * dist R g * < = x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * dist R g * <
20 eqidd φ F R F -1 = F R F -1
21 1 2 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 3 4 imasval φ U = Base ndx B + ndx p V q V F p F q F p + R q ndx p V q V F p F q F p R q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * dist R g * <
22 eqid Base ndx B + ndx p V q V F p F q F p + R q ndx p V q V F p F q F p R q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * dist R g * < = Base ndx B + ndx p V q V F p F q F p + R q ndx p V q V F p F q F p R q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * dist R g * <
23 22 imasvalstr Base ndx B + ndx p V q V F p F q F p + R q ndx p V q V F p F q F p R q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * dist R g * < Struct 1 12
24 baseid Base = Slot Base ndx
25 snsstp1 Base ndx B Base ndx B + ndx p V q V F p F q F p + R q ndx p V q V F p F q F p R q
26 ssun1 Base ndx B + ndx p V q V F p F q F p + R q ndx p V q V F p F q F p R q Base ndx B + ndx p V q V F p F q F p + R q ndx p V q V F p F q F p R q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q
27 25 26 sstri Base ndx B Base ndx B + ndx p V q V F p F q F p + R q ndx p V q V F p F q F p R q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q
28 ssun1 Base ndx B + ndx p V q V F p F q F p + R q ndx p V q V F p F q F p R q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q Base ndx B + ndx p V q V F p F q F p + R q ndx p V q V F p F q F p R q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * dist R g * <
29 27 28 sstri Base ndx B Base ndx B + ndx p V q V F p F q F p + R q ndx p V q V F p F q F p R q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * dist R g * <
30 fvex Base R V
31 2 30 eqeltrdi φ V V
32 fornex V V F : V onto B B V
33 31 3 32 sylc φ B V
34 eqid Base U = Base U
35 21 23 24 29 33 34 strfv3 φ Base U = B
36 35 eqcomd φ B = Base U