Metamath Proof Explorer


Theorem imasds

Description: The distance function of an image structure. (Contributed by Mario Carneiro, 23-Feb-2015) (Revised by Mario Carneiro, 11-Jul-2015) (Revised by Thierry Arnoux, 16-Jun-2019) (Revised by AV, 6-Oct-2020)

Ref Expression
Hypotheses imasbas.u φ U = F 𝑠 R
imasbas.v φ V = Base R
imasbas.f φ F : V onto B
imasbas.r φ R Z
imasds.e E = dist R
imasds.d D = dist U
Assertion imasds φ D = x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * E g * <

Proof

Step Hyp Ref Expression
1 imasbas.u φ U = F 𝑠 R
2 imasbas.v φ V = Base R
3 imasbas.f φ F : V onto B
4 imasbas.r φ R Z
5 imasds.e E = dist R
6 imasds.d D = dist U
7 eqid + R = + R
8 eqid R = R
9 eqid Scalar R = Scalar R
10 eqid Base Scalar R = Base Scalar R
11 eqid R = R
12 eqid 𝑖 R = 𝑖 R
13 eqid TopOpen R = TopOpen R
14 eqid R = R
15 eqidd φ p V q V F p F q F p + R q = p V q V F p F q F p + R q
16 eqidd φ p V q V F p F q F p R q = p V q V F p F q F p R q
17 eqidd φ q V p Base Scalar R , x F q F p R q = q V p Base Scalar R , x F q F p R q
18 eqidd φ p V q V F p F q p 𝑖 R q = p V q V F p F q p 𝑖 R q
19 eqidd φ TopOpen R qTop F = TopOpen R qTop F
20 eqidd φ x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * E g * < = x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * E g * <
21 eqidd φ F R F -1 = F R F -1
22 1 2 7 8 9 10 11 12 13 5 14 15 16 17 18 19 20 21 3 4 imasval φ U = Base ndx B + ndx p V q V F p F q F p + R q ndx p V q V F p F q F p R q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * E g * <
23 eqid Base ndx B + ndx p V q V F p F q F p + R q ndx p V q V F p F q F p R q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * E g * < = Base ndx B + ndx p V q V F p F q F p + R q ndx p V q V F p F q F p R q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * E g * <
24 23 imasvalstr Base ndx B + ndx p V q V F p F q F p + R q ndx p V q V F p F q F p R q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * E g * < Struct 1 12
25 dsid dist = Slot dist ndx
26 snsstp3 dist ndx x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * E g * < TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * E g * <
27 ssun2 TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * E g * < Base ndx B + ndx p V q V F p F q F p + R q ndx p V q V F p F q F p R q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * E g * <
28 26 27 sstri dist ndx x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * E g * < Base ndx B + ndx p V q V F p F q F p + R q ndx p V q V F p F q F p R q Scalar ndx Scalar R ndx q V p Base Scalar R , x F q F p R q 𝑖 ndx p V q V F p F q p 𝑖 R q TopSet ndx TopOpen R qTop F ndx F R F -1 dist ndx x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * E g * <
29 fvex Base R V
30 2 29 eqeltrdi φ V V
31 fornex V V F : V onto B B V
32 30 3 31 sylc φ B V
33 mpoexga B V B V x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * E g * < V
34 32 32 33 syl2anc φ x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * E g * < V
35 22 24 25 28 34 6 strfv3 φ D = x B , y B sup n ran g h V × V 1 n | F 1 st h 1 = x F 2 nd h n = y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * E g * <