Metamath Proof Explorer


Theorem imasdsf1o

Description: The distance function is transferred across an image structure under a bijection. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Hypotheses imasdsf1o.u φ U = F 𝑠 R
imasdsf1o.v φ V = Base R
imasdsf1o.f φ F : V 1-1 onto B
imasdsf1o.r φ R Z
imasdsf1o.e E = dist R V × V
imasdsf1o.d D = dist U
imasdsf1o.m φ E ∞Met V
imasdsf1o.x φ X V
imasdsf1o.y φ Y V
Assertion imasdsf1o φ F X D F Y = X E Y

Proof

Step Hyp Ref Expression
1 imasdsf1o.u φ U = F 𝑠 R
2 imasdsf1o.v φ V = Base R
3 imasdsf1o.f φ F : V 1-1 onto B
4 imasdsf1o.r φ R Z
5 imasdsf1o.e E = dist R V × V
6 imasdsf1o.d D = dist U
7 imasdsf1o.m φ E ∞Met V
8 imasdsf1o.x φ X V
9 imasdsf1o.y φ Y V
10 eqid 𝑠 * 𝑠 * −∞ = 𝑠 * 𝑠 * −∞
11 eqid h V × V 1 n | F 1 st h 1 = F X F 2 nd h n = F Y i 1 n 1 F 2 nd h i = F 1 st h i + 1 = h V × V 1 n | F 1 st h 1 = F X F 2 nd h n = F Y i 1 n 1 F 2 nd h i = F 1 st h i + 1
12 eqid n ran g h V × V 1 n | F 1 st h 1 = F X F 2 nd h n = F Y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * E g = n ran g h V × V 1 n | F 1 st h 1 = F X F 2 nd h n = F Y i 1 n 1 F 2 nd h i = F 1 st h i + 1 𝑠 * E g
13 1 2 3 4 5 6 7 8 9 10 11 12 imasdsf1olem φ F X D F Y = X E Y